Geodetic measurements reveal similarities between post-Last Glacial Maximum and present-day mass loss from the Greenland ice sheet
- PMID: 27679819
- PMCID: PMC5031466
- DOI: 10.1126/sciadv.1600931
Geodetic measurements reveal similarities between post-Last Glacial Maximum and present-day mass loss from the Greenland ice sheet
Abstract
Accurate quantification of the millennial-scale mass balance of the Greenland ice sheet (GrIS) and its contribution to global sea-level rise remain challenging because of sparse in situ observations in key regions. Glacial isostatic adjustment (GIA) is the ongoing response of the solid Earth to ice and ocean load changes occurring since the Last Glacial Maximum (LGM; ~21 thousand years ago) and may be used to constrain the GrIS deglaciation history. We use data from the Greenland Global Positioning System network to directly measure GIA and estimate basin-wide mass changes since the LGM. Unpredicted, large GIA uplift rates of +12 mm/year are found in southeast Greenland. These rates are due to low upper mantle viscosity in the region, from when Greenland passed over the Iceland hot spot about 40 million years ago. This region of concentrated soft rheology has a profound influence on reconstructing the deglaciation history of Greenland. We reevaluate the evolution of the GrIS since LGM and obtain a loss of 1.5-m sea-level equivalent from the northwest and southeast. These same sectors are dominating modern mass loss. We suggest that the present destabilization of these marine-based sectors may increase sea level for centuries to come. Our new deglaciation history and GIA uplift estimates suggest that studies that use the Gravity Recovery and Climate Experiment satellite mission to infer present-day changes in the GrIS may have erroneously corrected for GIA and underestimated the mass loss by about 20 gigatons/year.
Keywords: GPS; Greenland Ice Sheet; Last Glacial Maximum; Sea level rise; climate change; glacial isostatic adjustment.
Figures




Similar articles
-
Greenland Mass Trends From Airborne and Satellite Altimetry During 2011-2020.J Geophys Res Earth Surf. 2022 Apr;127(4):e2021JF006505. doi: 10.1029/2021JF006505. Epub 2022 Mar 28. J Geophys Res Earth Surf. 2022. PMID: 35864950 Free PMC article.
-
Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice-sheet stability.Science. 2018 Jun 22;360(6395):1335-1339. doi: 10.1126/science.aao1447. Science. 2018. PMID: 29930133
-
A persistent and dynamic East Greenland Ice Sheet over the past 7.5 million years.Nature. 2016 Dec 7;540(7632):256-260. doi: 10.1038/nature20147. Nature. 2016. PMID: 27929005
-
Glacial isostatic adjustment: physical models and observational constraints.Rep Prog Phys. 2022 Sep 21;85(9). doi: 10.1088/1361-6633/ac805b. Rep Prog Phys. 2022. PMID: 35820343 Review.
-
On the rate and causes of twentieth century sea-level rise.Philos Trans A Math Phys Eng Sci. 2006 Apr 15;364(1841):805-20. doi: 10.1098/rsta.2006.1738. Philos Trans A Math Phys Eng Sci. 2006. PMID: 16537141 Review.
Cited by
-
Contributions of GRACE to understanding climate change.Nat Clim Chang. 2019 Apr 15;5(5):358-369. doi: 10.1038/s41558-019-0456-2. Nat Clim Chang. 2019. PMID: 31534490 Free PMC article.
-
Greenland Mass Trends From Airborne and Satellite Altimetry During 2011-2020.J Geophys Res Earth Surf. 2022 Apr;127(4):e2021JF006505. doi: 10.1029/2021JF006505. Epub 2022 Mar 28. J Geophys Res Earth Surf. 2022. PMID: 35864950 Free PMC article.
-
Accelerating changes in ice mass within Greenland, and the ice sheet's sensitivity to atmospheric forcing.Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):1934-1939. doi: 10.1073/pnas.1806562116. Epub 2019 Jan 22. Proc Natl Acad Sci U S A. 2019. PMID: 30670639 Free PMC article.
-
Extensive inland thinning and speed-up of Northeast Greenland Ice Stream.Nature. 2022 Nov;611(7937):727-732. doi: 10.1038/s41586-022-05301-z. Epub 2022 Nov 9. Nature. 2022. PMID: 36352226 Free PMC article.
-
Accelerating Ice Loss From Peripheral Glaciers in North Greenland.Geophys Res Lett. 2022 Jun 28;49(12):e2022GL098915. doi: 10.1029/2022GL098915. Epub 2022 Jun 16. Geophys Res Lett. 2022. PMID: 35865910 Free PMC article.
References
-
- Simpson M. J. R., Wake L., Milne G. A., Huybrechts P., The influence of decadal- to millennial-scale ice mass changes on present-day vertical land motion in Greenland: Implications for the interpretation of GPS observations. J. Geophys. Res. 116, B02406 (2011).
-
- Fleming K., Lambeck K., Constraints on the Greenland ice sheet since the Last Glacial Maximum from sea-level observations and glacial-rebound models. Quat. Sci. Rev. 23, 1053–1077 (2004).
-
- Tarasov L. Peltier W. R., Greenland glacial history, borehole constraints, and Eemian extent. J. Geophys. Res. 108, 2143 (2003).
-
- Peltier W. R., Postglacial variations in the level of the sea: Implications for climate dynamics and solid-Earth geophysics. Rev. Geophys. 36, 603–689 (1998).
-
- Ivins E. R., James T. S., Wahr J., Schrama E. J. O., Landerer F. W., Simon K. M., Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. J. Geophys. Res. Solid Earth 118, 3126–3141 (2013).
LinkOut - more resources
Full Text Sources
Other Literature Sources