Enhanced Higgs boson to τ(+)τ(-) search with deep learning
- PMID: 25839260
- DOI: 10.1103/PhysRevLett.114.111801
Enhanced Higgs boson to τ(+)τ(-) search with deep learning
Abstract
The Higgs boson is thought to provide the interaction that imparts mass to the fundamental fermions, but while measurements at the Large Hadron Collider (LHC) are consistent with this hypothesis, current analysis techniques lack the statistical power to cross the traditional 5σ significance barrier without more data. Deep learning techniques have the potential to increase the statistical power of this analysis by automatically learning complex, high-level data representations. In this work, deep neural networks are used to detect the decay of the Higgs boson to a pair of tau leptons. A Bayesian optimization algorithm is used to tune the network architecture and training algorithm hyperparameters, resulting in a deep network of eight nonlinear processing layers that improves upon the performance of shallow classifiers even without the use of features specifically engineered by physicists for this application. The improvement in discovery significance is equivalent to an increase in the accumulated data set of 25%.
Similar articles
-
Determining the CP parity of Higgs bosons via their tau decay channels at the Large Hadron Collider.Phys Rev Lett. 2008 May 2;100(17):171605. doi: 10.1103/PhysRevLett.100.171605. Epub 2008 Apr 29. Phys Rev Lett. 2008. PMID: 18518275
-
Search for the standard model Higgs boson in tau final states.Phys Rev Lett. 2009 Jun 26;102(25):251801. doi: 10.1103/PhysRevLett.102.251801. Epub 2009 Jun 25. Phys Rev Lett. 2009. PMID: 19659068
-
Role of h-->etaeta in intermediate-mass Higgs boson searches at the Large Hadron Collider.Phys Rev Lett. 2007 Jul 20;99(3):031801. doi: 10.1103/PhysRevLett.99.031801. Epub 2007 Jul 17. Phys Rev Lett. 2007. PMID: 17678279
-
Measuring the Higgs boson self-coupling at the Large Hadron Collider.Phys Rev Lett. 2002 Oct 7;89(15):151801. doi: 10.1103/PhysRevLett.89.151801. Epub 2002 Sep 20. Phys Rev Lett. 2002. PMID: 12365980
-
Implementation and analysis of quantum computing application to Higgs boson reconstruction at the large Hadron Collider.Sci Rep. 2021 Nov 24;11(1):22850. doi: 10.1038/s41598-021-01552-4. Sci Rep. 2021. PMID: 34819527 Free PMC article.
Cited by
-
Lorentz group equivariant autoencoders.Eur Phys J C Part Fields. 2023;83(6):485. doi: 10.1140/epjc/s10052-023-11633-5. Epub 2023 Jun 9. Eur Phys J C Part Fields. 2023. PMID: 37303461 Free PMC article.
-
ADMMBO: Bayesian Optimization with Unknown Constraints using ADMM.J Mach Learn Res. 2019;20:123. J Mach Learn Res. 2019. PMID: 31798351 Free PMC article.
-
An equation-of-state-meter of quantum chromodynamics transition from deep learning.Nat Commun. 2018 Jan 15;9(1):210. doi: 10.1038/s41467-017-02726-3. Nat Commun. 2018. PMID: 29335457 Free PMC article.
-
Deep learning as a tool for neural data analysis: Speech classification and cross-frequency coupling in human sensorimotor cortex.PLoS Comput Biol. 2019 Sep 16;15(9):e1007091. doi: 10.1371/journal.pcbi.1007091. eCollection 2019 Sep. PLoS Comput Biol. 2019. PMID: 31525179 Free PMC article.
-
Boosting Higgs pair production in the [Formula: see text] final state with multivariate techniques.Eur Phys J C Part Fields. 2016;76(7):386. doi: 10.1140/epjc/s10052-016-4215-5. Epub 2016 Jul 8. Eur Phys J C Part Fields. 2016. PMID: 28280449 Free PMC article.
LinkOut - more resources
Full Text Sources