Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011:40:187-203.
doi: 10.1146/annurev-biophys-072110-125325.

Molecular origin of the hierarchical elasticity of titin: simulation, experiment, and theory

Affiliations
Review

Molecular origin of the hierarchical elasticity of titin: simulation, experiment, and theory

Jen Hsin et al. Annu Rev Biophys. 2011.

Abstract

This review uses the giant muscle protein titin as an example to showcase the capability of molecular dynamics simulations. Titin is responsible for the passive elasticity in muscle and is a chain composed of immunoglobulin (Ig)-like and fibronectin III (FN-III)-like domains, as well as PEVK segments rich in proline (P), glutamate (E), valine (V), and lysine (K). The elasticity of titin is derived in stages of extension under increasing external force: Ig domain straightening occurs first (termed tertiary structure elasticity), followed by the extension of the disordered PEVK segments. At larger extension and force, Ig domains unfold one by one (termed secondary structure elasticity). With the availability of crystal structures of single and connected Ig domains, the tertiary and secondary structure elasticity of titin was investigated through molecular dynamics simulations, unveiling the molecular origin of titin's elasticity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources