Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Oct;37(10):608-12.
doi: 10.2519/jospt.2007.2418.

Intrarater and interrater reliability of assessment of lumbar multifidus muscle thickness using rehabilitative ultrasound imaging

Affiliations
Comparative Study

Intrarater and interrater reliability of assessment of lumbar multifidus muscle thickness using rehabilitative ultrasound imaging

Tracy L Wallwork et al. J Orthop Sports Phys Ther. 2007 Oct.

Abstract

Study design: Within-session intrarater and interrater reliability study.

Objective: To establish the intrarater and interrater reliability of thickness measurements of the multifidus muscle in a parasagittal plane, conducted by an experienced ultrasound operator and a novice assessor.

Background: There is considerable evidence for the important role of the multifidus muscle in segmental stabilization of the lumbar spine. The cross-sectional area of the multifidus muscle has been assessed in healthy subjects and patients with low back pain using real-time ultrasound imaging. However, few studies have measured the thickness of the multifidus muscle using a parasagittal view.

Methods and measures: The thickness of the multifidus muscle was measured at rest, using real-time ultrasound imaging, in 10 subjects without a history of low back pain, at the levels of the L2-3 and L4-5 zygapophyseal joints. The measure was carried out 3 times at each level by 2 assessors (1 experienced, 1 novice). Intrarater (model 3) and interrater (model 2) reliability was assessed by calculation of an F statistic (analysis of variance), the intraclass correlation coefficient (ICC), and the standard error of measurement (SEM).

Results: On the basis of an average of 3 trials, the 2 operators showed very high interrater agreement on the measurement of thicknesses at the L2-3 level (ICC2,3 = 0.96; 95% CI: 0.84 to 0.99) and the L4-5 vertebral level (ICC2,3 = 0.97; 95% CI: 0.87 to 0.99), with no systematic differences in muscle size across operators (P > .05). Interrater reliability was relatively lower for the L2-3 level (ICC2,1 = 0.85; 95% CI: 0.51 to 0.96) than the L4-5 level (ICC2,1 = 0.87; 95% CI: 0.52 to 0.97) when a single trial per rater was used, but these values still indicated a high level of agreement. In addition, the novice and experienced operator produced reliable intrarater measurements at L2-3 (ICC3,1 = 0.89; 95% CI: 0.72 to 0.97 and 0.94; 95% CI: 0.86 to 0.99) and at L4-5 (ICC3,1 = 0.88; 95% CI: 0.68 to 0.97 and 0.95; 95% CI: 0.86 to 0.99), with no systematic differences in muscle size across trials (P > .05). The consistently low SEM values also indicate low measurement error.

Conclusion: A novice and an experienced assessor were both able to reliably perform this measure at rest for 2 vertebral levels using real-time ultrasound imaging. An average of 3 trials produced higher interrater reliability scores, though using a single trial per rater was also reliable.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources